extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Q8)⋊1C22 = C42.275C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):1C2^2 | 128,1678 |
(C4×Q8)⋊2C22 = C42.278C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):2C2^2 | 128,1681 |
(C4×Q8)⋊3C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):3C2^2 | 128,1775 |
(C4×Q8)⋊4C22 = C42.18C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):4C2^2 | 128,1777 |
(C4×Q8)⋊5C22 = C42.222D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):5C2^2 | 128,1833 |
(C4×Q8)⋊6C22 = C42.225D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):6C2^2 | 128,1837 |
(C4×Q8)⋊7C22 = C42.228D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):7C2^2 | 128,1842 |
(C4×Q8)⋊8C22 = C42.232D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):8C2^2 | 128,1846 |
(C4×Q8)⋊9C22 = C42.352C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):9C2^2 | 128,1850 |
(C4×Q8)⋊10C22 = C42.357C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):10C2^2 | 128,1855 |
(C4×Q8)⋊11C22 = C42.266D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):11C2^2 | 128,1940 |
(C4×Q8)⋊12C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):12C2^2 | 128,1943 |
(C4×Q8)⋊13C22 = C42.273D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):13C2^2 | 128,1947 |
(C4×Q8)⋊14C22 = C42.275D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):14C2^2 | 128,1949 |
(C4×Q8)⋊15C22 = C42.408C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):15C2^2 | 128,1954 |
(C4×Q8)⋊16C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):16C2^2 | 128,1956 |
(C4×Q8)⋊17C22 = SD16⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):17C2^2 | 128,1997 |
(C4×Q8)⋊18C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):18C2^2 | 128,1998 |
(C4×Q8)⋊19C22 = SD16⋊7D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):19C2^2 | 128,2000 |
(C4×Q8)⋊20C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):20C2^2 | 128,2006 |
(C4×Q8)⋊21C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):21C2^2 | 128,2007 |
(C4×Q8)⋊22C22 = D4×SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):22C2^2 | 128,2013 |
(C4×Q8)⋊23C22 = SD16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):23C2^2 | 128,2014 |
(C4×Q8)⋊24C22 = D4⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):24C2^2 | 128,2027 |
(C4×Q8)⋊25C22 = C42.461C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):25C2^2 | 128,2028 |
(C4×Q8)⋊26C22 = C42.45C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):26C2^2 | 128,2042 |
(C4×Q8)⋊27C22 = C42.46C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):27C2^2 | 128,2043 |
(C4×Q8)⋊28C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):28C2^2 | 128,2046 |
(C4×Q8)⋊29C22 = C42.472C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):29C2^2 | 128,2055 |
(C4×Q8)⋊30C22 = C42.473C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):30C2^2 | 128,2056 |
(C4×Q8)⋊31C22 = C22.44C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):31C2^2 | 128,2187 |
(C4×Q8)⋊32C22 = C22.47C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):32C2^2 | 128,2190 |
(C4×Q8)⋊33C22 = C22.48C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):33C2^2 | 128,2191 |
(C4×Q8)⋊34C22 = C22.64C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):34C2^2 | 128,2207 |
(C4×Q8)⋊35C22 = C22.75C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):35C2^2 | 128,2218 |
(C4×Q8)⋊36C22 = C22.76C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):36C2^2 | 128,2219 |
(C4×Q8)⋊37C22 = C22.77C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):37C2^2 | 128,2220 |
(C4×Q8)⋊38C22 = C22.78C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):38C2^2 | 128,2221 |
(C4×Q8)⋊39C22 = C22.80C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):39C2^2 | 128,2223 |
(C4×Q8)⋊40C22 = C22.81C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):40C2^2 | 128,2224 |
(C4×Q8)⋊41C22 = C22.82C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):41C2^2 | 128,2225 |
(C4×Q8)⋊42C22 = C22.83C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):42C2^2 | 128,2226 |
(C4×Q8)⋊43C22 = C22.84C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):43C2^2 | 128,2227 |
(C4×Q8)⋊44C22 = C22.90C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):44C2^2 | 128,2233 |
(C4×Q8)⋊45C22 = C22.94C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):45C2^2 | 128,2237 |
(C4×Q8)⋊46C22 = C22.95C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):46C2^2 | 128,2238 |
(C4×Q8)⋊47C22 = C22.97C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):47C2^2 | 128,2240 |
(C4×Q8)⋊48C22 = C22.99C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):48C2^2 | 128,2242 |
(C4×Q8)⋊49C22 = C22.102C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):49C2^2 | 128,2245 |
(C4×Q8)⋊50C22 = C22.103C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):50C2^2 | 128,2246 |
(C4×Q8)⋊51C22 = C22.108C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):51C2^2 | 128,2251 |
(C4×Q8)⋊52C22 = C23.144C24 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):52C2^2 | 128,2252 |
(C4×Q8)⋊53C22 = C22.110C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):53C2^2 | 128,2253 |
(C4×Q8)⋊54C22 = C22.118C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):54C2^2 | 128,2261 |
(C4×Q8)⋊55C22 = C22.122C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):55C2^2 | 128,2265 |
(C4×Q8)⋊56C22 = C22.124C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):56C2^2 | 128,2267 |
(C4×Q8)⋊57C22 = C22.125C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):57C2^2 | 128,2268 |
(C4×Q8)⋊58C22 = C22.127C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):58C2^2 | 128,2270 |
(C4×Q8)⋊59C22 = C22.128C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):59C2^2 | 128,2271 |
(C4×Q8)⋊60C22 = C22.129C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):60C2^2 | 128,2272 |
(C4×Q8)⋊61C22 = C22.130C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):61C2^2 | 128,2273 |
(C4×Q8)⋊62C22 = C22.131C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):62C2^2 | 128,2274 |
(C4×Q8)⋊63C22 = C22.132C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):63C2^2 | 128,2275 |
(C4×Q8)⋊64C22 = C22.134C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):64C2^2 | 128,2277 |
(C4×Q8)⋊65C22 = C22.135C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):65C2^2 | 128,2278 |
(C4×Q8)⋊66C22 = C22.140C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):66C2^2 | 128,2283 |
(C4×Q8)⋊67C22 = C22.147C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):67C2^2 | 128,2290 |
(C4×Q8)⋊68C22 = C22.149C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):68C2^2 | 128,2292 |
(C4×Q8)⋊69C22 = C22.150C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):69C2^2 | 128,2293 |
(C4×Q8)⋊70C22 = C22.151C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):70C2^2 | 128,2294 |
(C4×Q8)⋊71C22 = C22.153C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):71C2^2 | 128,2296 |
(C4×Q8)⋊72C22 = C22.155C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):72C2^2 | 128,2298 |
(C4×Q8)⋊73C22 = C22.157C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 32 | | (C4xQ8):73C2^2 | 128,2300 |
(C4×Q8)⋊74C22 = C2×C4×SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):74C2^2 | 128,1669 |
(C4×Q8)⋊75C22 = C2×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):75C2^2 | 128,1672 |
(C4×Q8)⋊76C22 = C4×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):76C2^2 | 128,1676 |
(C4×Q8)⋊77C22 = C2×C4⋊SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):77C2^2 | 128,1764 |
(C4×Q8)⋊78C22 = C2×Q8.D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):78C2^2 | 128,1766 |
(C4×Q8)⋊79C22 = C42.444D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):79C2^2 | 128,1770 |
(C4×Q8)⋊80C22 = C42.446D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):80C2^2 | 128,1772 |
(C4×Q8)⋊81C22 = C2×C23.32C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):81C2^2 | 128,2158 |
(C4×Q8)⋊82C22 = C2×C23.33C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):82C2^2 | 128,2159 |
(C4×Q8)⋊83C22 = C22.14C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):83C2^2 | 128,2160 |
(C4×Q8)⋊84C22 = C2×C23.36C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):84C2^2 | 128,2171 |
(C4×Q8)⋊85C22 = C2×C23.37C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):85C2^2 | 128,2175 |
(C4×Q8)⋊86C22 = C22.33C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):86C2^2 | 128,2176 |
(C4×Q8)⋊87C22 = C2×C22.35C24 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):87C2^2 | 128,2185 |
(C4×Q8)⋊88C22 = C2×C22.36C24 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):88C2^2 | 128,2186 |
(C4×Q8)⋊89C22 = C22.49C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):89C2^2 | 128,2192 |
(C4×Q8)⋊90C22 = C2×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):90C2^2 | 128,2197 |
(C4×Q8)⋊91C22 = C2×D4×Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):91C2^2 | 128,2198 |
(C4×Q8)⋊92C22 = C2×Q8⋊6D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):92C2^2 | 128,2199 |
(C4×Q8)⋊93C22 = D4×C4○D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):93C2^2 | 128,2200 |
(C4×Q8)⋊94C22 = C2×C22.46C24 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):94C2^2 | 128,2202 |
(C4×Q8)⋊95C22 = C2×D4⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):95C2^2 | 128,2204 |
(C4×Q8)⋊96C22 = C2×C22.50C24 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):96C2^2 | 128,2206 |
(C4×Q8)⋊97C22 = C2×C22.53C24 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8):97C2^2 | 128,2211 |
(C4×Q8)⋊98C22 = C22.70C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):98C2^2 | 128,2213 |
(C4×Q8)⋊99C22 = C22.87C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):99C2^2 | 128,2230 |
(C4×Q8)⋊100C22 = C22.89C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 32 | | (C4xQ8):100C2^2 | 128,2232 |
(C4×Q8)⋊101C22 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C4xQ8):101C2^2 | 128,2156 |
(C4×Q8)⋊102C22 = C4×2+ 1+4 | φ: trivial image | 32 | | (C4xQ8):102C2^2 | 128,2161 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Q8).1C22 = C42.46D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).1C2^2 | 128,213 |
(C4×Q8).2C22 = C42.373D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).2C2^2 | 128,214 |
(C4×Q8).3C22 = C42.47D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).3C2^2 | 128,215 |
(C4×Q8).4C22 = C42.401D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).4C2^2 | 128,217 |
(C4×Q8).5C22 = C42.316D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).5C2^2 | 128,225 |
(C4×Q8).6C22 = C42.305D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).6C2^2 | 128,226 |
(C4×Q8).7C22 = C42.52D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).7C2^2 | 128,227 |
(C4×Q8).8C22 = C42.54D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).8C2^2 | 128,229 |
(C4×Q8).9C22 = C8⋊12SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).9C2^2 | 128,314 |
(C4×Q8).10C22 = C8⋊9Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).10C2^2 | 128,316 |
(C4×Q8).11C22 = D4.M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).11C2^2 | 128,317 |
(C4×Q8).12C22 = Q8.M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).12C2^2 | 128,319 |
(C4×Q8).13C22 = C8⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).13C2^2 | 128,322 |
(C4×Q8).14C22 = C8⋊6Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).14C2^2 | 128,323 |
(C4×Q8).15C22 = C8⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).15C2^2 | 128,324 |
(C4×Q8).16C22 = C8.M4(2) | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).16C2^2 | 128,325 |
(C4×Q8).17C22 = C42.181C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).17C2^2 | 128,352 |
(C4×Q8).18C22 = Q8⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).18C2^2 | 128,353 |
(C4×Q8).19C22 = D4⋊SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).19C2^2 | 128,354 |
(C4×Q8).20C22 = Q8⋊SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).20C2^2 | 128,355 |
(C4×Q8).21C22 = Q8⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).21C2^2 | 128,358 |
(C4×Q8).22C22 = Q8⋊3D8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).22C2^2 | 128,359 |
(C4×Q8).23C22 = C42.189C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).23C2^2 | 128,360 |
(C4×Q8).24C22 = C42.191C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).24C2^2 | 128,362 |
(C4×Q8).25C22 = Q8⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).25C2^2 | 128,363 |
(C4×Q8).26C22 = D4⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).26C2^2 | 128,364 |
(C4×Q8).27C22 = Q8⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).27C2^2 | 128,365 |
(C4×Q8).28C22 = Q8.Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).28C2^2 | 128,368 |
(C4×Q8).29C22 = D4.3Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).29C2^2 | 128,369 |
(C4×Q8).30C22 = C42.199C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).30C2^2 | 128,370 |
(C4×Q8).31C22 = C42.201C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).31C2^2 | 128,372 |
(C4×Q8).32C22 = Q8.D8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).32C2^2 | 128,373 |
(C4×Q8).33C22 = Q8⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).33C2^2 | 128,374 |
(C4×Q8).34C22 = D4.5SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).34C2^2 | 128,375 |
(C4×Q8).35C22 = D4⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).35C2^2 | 128,376 |
(C4×Q8).36C22 = Q8⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).36C2^2 | 128,377 |
(C4×Q8).37C22 = Q8⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).37C2^2 | 128,380 |
(C4×Q8).38C22 = D4⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).38C2^2 | 128,381 |
(C4×Q8).39C22 = C42.211C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).39C2^2 | 128,382 |
(C4×Q8).40C22 = Q8⋊4SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).40C2^2 | 128,383 |
(C4×Q8).41C22 = C42.213C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).41C2^2 | 128,384 |
(C4×Q8).42C22 = Q8.SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).42C2^2 | 128,385 |
(C4×Q8).43C22 = C8⋊SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).43C2^2 | 128,418 |
(C4×Q8).44C22 = C8⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).44C2^2 | 128,420 |
(C4×Q8).45C22 = C8.SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).45C2^2 | 128,422 |
(C4×Q8).46C22 = C8⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).46C2^2 | 128,424 |
(C4×Q8).47C22 = C8⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).47C2^2 | 128,426 |
(C4×Q8).48C22 = C8.3Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).48C2^2 | 128,428 |
(C4×Q8).49C22 = C42.249C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).49C2^2 | 128,430 |
(C4×Q8).50C22 = C42.251C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).50C2^2 | 128,432 |
(C4×Q8).51C22 = C42.253C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).51C2^2 | 128,434 |
(C4×Q8).52C22 = C42.255C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).52C2^2 | 128,436 |
(C4×Q8).53C22 = C42.276C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).53C2^2 | 128,1679 |
(C4×Q8).54C22 = C42.279C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).54C2^2 | 128,1682 |
(C4×Q8).55C22 = C42.280C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).55C2^2 | 128,1683 |
(C4×Q8).56C22 = C42.281C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).56C2^2 | 128,1684 |
(C4×Q8).57C22 = C42.287C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).57C2^2 | 128,1693 |
(C4×Q8).58C22 = M4(2)⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).58C2^2 | 128,1694 |
(C4×Q8).59C22 = C42.292C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).59C2^2 | 128,1699 |
(C4×Q8).60C22 = C42.293C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).60C2^2 | 128,1700 |
(C4×Q8).61C22 = C42.305C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).61C2^2 | 128,1719 |
(C4×Q8).62C22 = C42.307C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).62C2^2 | 128,1724 |
(C4×Q8).63C22 = C42.310C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).63C2^2 | 128,1727 |
(C4×Q8).64C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).64C2^2 | 128,1776 |
(C4×Q8).65C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).65C2^2 | 128,1778 |
(C4×Q8).66C22 = C42.21C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).66C2^2 | 128,1814 |
(C4×Q8).67C22 = C42.22C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).67C2^2 | 128,1815 |
(C4×Q8).68C22 = C42.23C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).68C2^2 | 128,1816 |
(C4×Q8).69C22 = C42.384D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).69C2^2 | 128,1834 |
(C4×Q8).70C22 = C42.224D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).70C2^2 | 128,1836 |
(C4×Q8).71C22 = C42.451D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).71C2^2 | 128,1839 |
(C4×Q8).72C22 = C42.226D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).72C2^2 | 128,1840 |
(C4×Q8).73C22 = C42.229D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).73C2^2 | 128,1843 |
(C4×Q8).74C22 = C42.231D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).74C2^2 | 128,1845 |
(C4×Q8).75C22 = C42.234D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).75C2^2 | 128,1848 |
(C4×Q8).76C22 = C42.235D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).76C2^2 | 128,1849 |
(C4×Q8).77C22 = C42.353C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).77C2^2 | 128,1851 |
(C4×Q8).78C22 = C42.354C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).78C2^2 | 128,1852 |
(C4×Q8).79C22 = C42.355C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).79C2^2 | 128,1853 |
(C4×Q8).80C22 = C42.358C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).80C2^2 | 128,1856 |
(C4×Q8).81C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).81C2^2 | 128,1857 |
(C4×Q8).82C22 = C42.360C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).82C2^2 | 128,1858 |
(C4×Q8).83C22 = C42.361C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).83C2^2 | 128,1859 |
(C4×Q8).84C22 = C42.365D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).84C2^2 | 128,1899 |
(C4×Q8).85C22 = C42.308D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).85C2^2 | 128,1900 |
(C4×Q8).86C22 = C42.367D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).86C2^2 | 128,1902 |
(C4×Q8).87C22 = C42.255D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).87C2^2 | 128,1903 |
(C4×Q8).88C22 = C42.256D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).88C2^2 | 128,1904 |
(C4×Q8).89C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).89C2^2 | 128,1905 |
(C4×Q8).90C22 = C42.386C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).90C2^2 | 128,1906 |
(C4×Q8).91C22 = C42.387C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).91C2^2 | 128,1907 |
(C4×Q8).92C22 = C42.389C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).92C2^2 | 128,1909 |
(C4×Q8).93C22 = C42.390C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).93C2^2 | 128,1910 |
(C4×Q8).94C22 = C42.391C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).94C2^2 | 128,1911 |
(C4×Q8).95C22 = C42.257D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).95C2^2 | 128,1912 |
(C4×Q8).96C22 = C42.258D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).96C2^2 | 128,1913 |
(C4×Q8).97C22 = C42.259D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).97C2^2 | 128,1914 |
(C4×Q8).98C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).98C2^2 | 128,1915 |
(C4×Q8).99C22 = C42.262D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).99C2^2 | 128,1917 |
(C4×Q8).100C22 = C42.267D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).100C2^2 | 128,1941 |
(C4×Q8).101C22 = C42.268D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).101C2^2 | 128,1942 |
(C4×Q8).102C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).102C2^2 | 128,1944 |
(C4×Q8).103C22 = C42.274D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).103C2^2 | 128,1948 |
(C4×Q8).104C22 = C42.276D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).104C2^2 | 128,1950 |
(C4×Q8).105C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).105C2^2 | 128,1951 |
(C4×Q8).106C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).106C2^2 | 128,1955 |
(C4×Q8).107C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).107C2^2 | 128,1957 |
(C4×Q8).108C22 = C42.281D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).108C2^2 | 128,1961 |
(C4×Q8).109C22 = C42.282D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).109C2^2 | 128,1962 |
(C4×Q8).110C22 = C42.283D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).110C2^2 | 128,1963 |
(C4×Q8).111C22 = C42.284D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).111C2^2 | 128,1964 |
(C4×Q8).112C22 = C42.285D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).112C2^2 | 128,1965 |
(C4×Q8).113C22 = C42.288D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).113C2^2 | 128,1968 |
(C4×Q8).114C22 = C42.289D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).114C2^2 | 128,1969 |
(C4×Q8).115C22 = C42.290D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).115C2^2 | 128,1970 |
(C4×Q8).116C22 = C42.291D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).116C2^2 | 128,1971 |
(C4×Q8).117C22 = C42.292D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).117C2^2 | 128,1972 |
(C4×Q8).118C22 = C42.424C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).118C2^2 | 128,1974 |
(C4×Q8).119C22 = C42.425C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).119C2^2 | 128,1975 |
(C4×Q8).120C22 = C42.426C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).120C2^2 | 128,1976 |
(C4×Q8).121C22 = C42.294D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).121C2^2 | 128,1978 |
(C4×Q8).122C22 = C42.295D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).122C2^2 | 128,1979 |
(C4×Q8).123C22 = C42.296D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).123C2^2 | 128,1980 |
(C4×Q8).124C22 = C42.297D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).124C2^2 | 128,1981 |
(C4×Q8).125C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).125C2^2 | 128,1982 |
(C4×Q8).126C22 = C42.299D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).126C2^2 | 128,1983 |
(C4×Q8).127C22 = C42.300D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).127C2^2 | 128,1984 |
(C4×Q8).128C22 = C42.302D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).128C2^2 | 128,1986 |
(C4×Q8).129C22 = C42.303D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).129C2^2 | 128,1987 |
(C4×Q8).130C22 = C42.304D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).130C2^2 | 128,1988 |
(C4×Q8).131C22 = C4.2- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).131C2^2 | 128,1989 |
(C4×Q8).132C22 = C42.25C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).132C2^2 | 128,1990 |
(C4×Q8).133C22 = C42.27C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).133C2^2 | 128,1992 |
(C4×Q8).134C22 = C42.28C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).134C2^2 | 128,1993 |
(C4×Q8).135C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).135C2^2 | 128,1994 |
(C4×Q8).136C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).136C2^2 | 128,1995 |
(C4×Q8).137C22 = SD16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).137C2^2 | 128,2001 |
(C4×Q8).138C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).138C2^2 | 128,2002 |
(C4×Q8).139C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).139C2^2 | 128,2003 |
(C4×Q8).140C22 = SD16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).140C2^2 | 128,2008 |
(C4×Q8).141C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).141C2^2 | 128,2009 |
(C4×Q8).142C22 = Q16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).142C2^2 | 128,2010 |
(C4×Q8).143C22 = SD16⋊11D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).143C2^2 | 128,2016 |
(C4×Q8).144C22 = Q16⋊12D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).144C2^2 | 128,2017 |
(C4×Q8).145C22 = D4×Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).145C2^2 | 128,2018 |
(C4×Q8).146C22 = Q16⋊13D4 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).146C2^2 | 128,2019 |
(C4×Q8).147C22 = D4⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).147C2^2 | 128,2030 |
(C4×Q8).148C22 = D4⋊5Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).148C2^2 | 128,2031 |
(C4×Q8).149C22 = C42.465C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).149C2^2 | 128,2032 |
(C4×Q8).150C22 = C42.466C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).150C2^2 | 128,2033 |
(C4×Q8).151C22 = C42.467C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).151C2^2 | 128,2034 |
(C4×Q8).152C22 = C42.469C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).152C2^2 | 128,2036 |
(C4×Q8).153C22 = C42.470C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).153C2^2 | 128,2037 |
(C4×Q8).154C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).154C2^2 | 128,2040 |
(C4×Q8).155C22 = C42.44C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).155C2^2 | 128,2041 |
(C4×Q8).156C22 = C42.47C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).156C2^2 | 128,2044 |
(C4×Q8).157C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).157C2^2 | 128,2045 |
(C4×Q8).158C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).158C2^2 | 128,2047 |
(C4×Q8).159C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).159C2^2 | 128,2048 |
(C4×Q8).160C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).160C2^2 | 128,2049 |
(C4×Q8).161C22 = C42.55C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).161C2^2 | 128,2052 |
(C4×Q8).162C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).162C2^2 | 128,2053 |
(C4×Q8).163C22 = C42.475C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).163C2^2 | 128,2058 |
(C4×Q8).164C22 = C42.476C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).164C2^2 | 128,2059 |
(C4×Q8).165C22 = C42.477C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).165C2^2 | 128,2060 |
(C4×Q8).166C22 = C42.478C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).166C2^2 | 128,2061 |
(C4×Q8).167C22 = C42.480C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).167C2^2 | 128,2063 |
(C4×Q8).168C22 = C42.481C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).168C2^2 | 128,2064 |
(C4×Q8).169C22 = C42.482C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).169C2^2 | 128,2065 |
(C4×Q8).170C22 = D4⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).170C2^2 | 128,2067 |
(C4×Q8).171C22 = C42.485C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).171C2^2 | 128,2068 |
(C4×Q8).172C22 = C42.486C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).172C2^2 | 128,2069 |
(C4×Q8).173C22 = D4⋊6Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).173C2^2 | 128,2070 |
(C4×Q8).174C22 = C42.489C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).174C2^2 | 128,2072 |
(C4×Q8).175C22 = C42.491C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).175C2^2 | 128,2074 |
(C4×Q8).176C22 = C42.57C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).176C2^2 | 128,2075 |
(C4×Q8).177C22 = C42.58C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).177C2^2 | 128,2076 |
(C4×Q8).178C22 = C42.60C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).178C2^2 | 128,2078 |
(C4×Q8).179C22 = C42.62C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).179C2^2 | 128,2080 |
(C4×Q8).180C22 = C42.63C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).180C2^2 | 128,2081 |
(C4×Q8).181C22 = C42.64C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).181C2^2 | 128,2082 |
(C4×Q8).182C22 = C42.492C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).182C2^2 | 128,2083 |
(C4×Q8).183C22 = C42.493C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).183C2^2 | 128,2084 |
(C4×Q8).184C22 = C42.494C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).184C2^2 | 128,2085 |
(C4×Q8).185C22 = C42.497C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).185C2^2 | 128,2088 |
(C4×Q8).186C22 = C42.498C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).186C2^2 | 128,2089 |
(C4×Q8).187C22 = C42.505C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).187C2^2 | 128,2096 |
(C4×Q8).188C22 = C42.506C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).188C2^2 | 128,2097 |
(C4×Q8).189C22 = C42.507C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).189C2^2 | 128,2098 |
(C4×Q8).190C22 = C42.508C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).190C2^2 | 128,2099 |
(C4×Q8).191C22 = C42.509C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).191C2^2 | 128,2100 |
(C4×Q8).192C22 = C42.510C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).192C2^2 | 128,2101 |
(C4×Q8).193C22 = C42.511C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).193C2^2 | 128,2102 |
(C4×Q8).194C22 = C42.512C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).194C2^2 | 128,2103 |
(C4×Q8).195C22 = C42.513C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).195C2^2 | 128,2104 |
(C4×Q8).196C22 = C42.514C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).196C2^2 | 128,2105 |
(C4×Q8).197C22 = C42.515C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).197C2^2 | 128,2106 |
(C4×Q8).198C22 = C42.516C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).198C2^2 | 128,2107 |
(C4×Q8).199C22 = C42.517C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).199C2^2 | 128,2108 |
(C4×Q8).200C22 = C42.518C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).200C2^2 | 128,2109 |
(C4×Q8).201C22 = Q8×SD16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).201C2^2 | 128,2111 |
(C4×Q8).202C22 = Q8×Q16 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).202C2^2 | 128,2114 |
(C4×Q8).203C22 = D8⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).203C2^2 | 128,2116 |
(C4×Q8).204C22 = SD16⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).204C2^2 | 128,2117 |
(C4×Q8).205C22 = SD16⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).205C2^2 | 128,2118 |
(C4×Q8).206C22 = Q16⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).206C2^2 | 128,2119 |
(C4×Q8).207C22 = SD16⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).207C2^2 | 128,2120 |
(C4×Q8).208C22 = D8⋊5Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).208C2^2 | 128,2121 |
(C4×Q8).209C22 = Q16⋊5Q8 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 128 | | (C4xQ8).209C2^2 | 128,2122 |
(C4×Q8).210C22 = C42.527C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).210C2^2 | 128,2125 |
(C4×Q8).211C22 = C42.528C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).211C2^2 | 128,2126 |
(C4×Q8).212C22 = C42.72C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).212C2^2 | 128,2129 |
(C4×Q8).213C22 = C42.73C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).213C2^2 | 128,2130 |
(C4×Q8).214C22 = C42.74C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).214C2^2 | 128,2131 |
(C4×Q8).215C22 = C42.75C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).215C2^2 | 128,2132 |
(C4×Q8).216C22 = C42.531C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).216C2^2 | 128,2133 |
(C4×Q8).217C22 = C42.532C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).217C2^2 | 128,2134 |
(C4×Q8).218C22 = C42.533C23 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).218C2^2 | 128,2135 |
(C4×Q8).219C22 = C22.91C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).219C2^2 | 128,2234 |
(C4×Q8).220C22 = C22.92C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).220C2^2 | 128,2235 |
(C4×Q8).221C22 = C22.93C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).221C2^2 | 128,2236 |
(C4×Q8).222C22 = C22.96C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).222C2^2 | 128,2239 |
(C4×Q8).223C22 = C22.98C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).223C2^2 | 128,2241 |
(C4×Q8).224C22 = C22.100C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).224C2^2 | 128,2243 |
(C4×Q8).225C22 = C22.104C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).225C2^2 | 128,2247 |
(C4×Q8).226C22 = C22.105C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).226C2^2 | 128,2248 |
(C4×Q8).227C22 = C22.106C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).227C2^2 | 128,2249 |
(C4×Q8).228C22 = C22.107C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).228C2^2 | 128,2250 |
(C4×Q8).229C22 = C22.111C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).229C2^2 | 128,2254 |
(C4×Q8).230C22 = C23.146C24 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).230C2^2 | 128,2255 |
(C4×Q8).231C22 = C22.113C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).231C2^2 | 128,2256 |
(C4×Q8).232C22 = C22.120C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).232C2^2 | 128,2263 |
(C4×Q8).233C22 = C22.133C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).233C2^2 | 128,2276 |
(C4×Q8).234C22 = C22.136C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).234C2^2 | 128,2279 |
(C4×Q8).235C22 = C22.137C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).235C2^2 | 128,2280 |
(C4×Q8).236C22 = C22.139C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).236C2^2 | 128,2282 |
(C4×Q8).237C22 = C22.141C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).237C2^2 | 128,2284 |
(C4×Q8).238C22 = C22.142C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).238C2^2 | 128,2285 |
(C4×Q8).239C22 = C22.143C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).239C2^2 | 128,2286 |
(C4×Q8).240C22 = C22.144C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).240C2^2 | 128,2287 |
(C4×Q8).241C22 = C22.145C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).241C2^2 | 128,2288 |
(C4×Q8).242C22 = C22.146C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).242C2^2 | 128,2289 |
(C4×Q8).243C22 = C22.148C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).243C2^2 | 128,2291 |
(C4×Q8).244C22 = C22.152C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).244C2^2 | 128,2295 |
(C4×Q8).245C22 = C22.154C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).245C2^2 | 128,2297 |
(C4×Q8).246C22 = C22.156C25 | φ: C22/C1 → C22 ⊆ Out C4×Q8 | 64 | | (C4xQ8).246C2^2 | 128,2299 |
(C4×Q8).247C22 = C2×Q8⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).247C2^2 | 128,207 |
(C4×Q8).248C22 = C42.455D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).248C2^2 | 128,208 |
(C4×Q8).249C22 = C42.397D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).249C2^2 | 128,209 |
(C4×Q8).250C22 = C42.399D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).250C2^2 | 128,211 |
(C4×Q8).251C22 = Q8⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).251C2^2 | 128,219 |
(C4×Q8).252C22 = C42.374D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).252C2^2 | 128,220 |
(C4×Q8).253C22 = D4⋊4M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).253C2^2 | 128,221 |
(C4×Q8).254C22 = Q8⋊5M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).254C2^2 | 128,223 |
(C4×Q8).255C22 = C8×SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).255C2^2 | 128,308 |
(C4×Q8).256C22 = C8×Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).256C2^2 | 128,309 |
(C4×Q8).257C22 = SD16⋊C8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).257C2^2 | 128,310 |
(C4×Q8).258C22 = Q16⋊5C8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).258C2^2 | 128,311 |
(C4×Q8).259C22 = C8⋊15SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).259C2^2 | 128,315 |
(C4×Q8).260C22 = Q8⋊2M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).260C2^2 | 128,320 |
(C4×Q8).261C22 = C8⋊14SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).261C2^2 | 128,398 |
(C4×Q8).262C22 = C8⋊13SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).262C2^2 | 128,400 |
(C4×Q8).263C22 = Q8⋊1Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).263C2^2 | 128,402 |
(C4×Q8).264C22 = C8⋊8Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).264C2^2 | 128,404 |
(C4×Q8).265C22 = C8⋊7Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).265C2^2 | 128,406 |
(C4×Q8).266C22 = Q8.1Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).266C2^2 | 128,408 |
(C4×Q8).267C22 = Q8.2SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).267C2^2 | 128,410 |
(C4×Q8).268C22 = Q8.3SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).268C2^2 | 128,412 |
(C4×Q8).269C22 = Q8.2D8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).269C2^2 | 128,414 |
(C4×Q8).270C22 = Q8.2Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).270C2^2 | 128,416 |
(C4×Q8).271C22 = C2×C4×Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).271C2^2 | 128,1670 |
(C4×Q8).272C22 = C4×C4○D8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).272C2^2 | 128,1671 |
(C4×Q8).273C22 = C2×Q16⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).273C2^2 | 128,1673 |
(C4×Q8).274C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).274C2^2 | 128,1675 |
(C4×Q8).275C22 = C4×C8.C22 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).275C2^2 | 128,1677 |
(C4×Q8).276C22 = C2×C8⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).276C2^2 | 128,1691 |
(C4×Q8).277C22 = C42.286C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).277C2^2 | 128,1692 |
(C4×Q8).278C22 = C42.290C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).278C2^2 | 128,1697 |
(C4×Q8).279C22 = C42.291C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).279C2^2 | 128,1698 |
(C4×Q8).280C22 = C42.294C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).280C2^2 | 128,1701 |
(C4×Q8).281C22 = D4⋊6M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).281C2^2 | 128,1702 |
(C4×Q8).282C22 = C42.302C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).282C2^2 | 128,1715 |
(C4×Q8).283C22 = C42.696C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).283C2^2 | 128,1717 |
(C4×Q8).284C22 = C42.304C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).284C2^2 | 128,1718 |
(C4×Q8).285C22 = C42.698C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).285C2^2 | 128,1721 |
(C4×Q8).286C22 = D4⋊8M4(2) | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).286C2^2 | 128,1722 |
(C4×Q8).287C22 = C42.308C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).287C2^2 | 128,1725 |
(C4×Q8).288C22 = C42.309C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).288C2^2 | 128,1726 |
(C4×Q8).289C22 = C2×C4⋊2Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).289C2^2 | 128,1765 |
(C4×Q8).290C22 = C42.443D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).290C2^2 | 128,1767 |
(C4×Q8).291C22 = C42.212D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).291C2^2 | 128,1769 |
(C4×Q8).292C22 = C42.445D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).292C2^2 | 128,1771 |
(C4×Q8).293C22 = C2×Q8⋊Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).293C2^2 | 128,1805 |
(C4×Q8).294C22 = C2×C4.Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).294C2^2 | 128,1806 |
(C4×Q8).295C22 = C2×Q8.Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).295C2^2 | 128,1807 |
(C4×Q8).296C22 = C42.447D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).296C2^2 | 128,1808 |
(C4×Q8).297C22 = C42.220D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).297C2^2 | 128,1810 |
(C4×Q8).298C22 = C42.448D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).298C2^2 | 128,1811 |
(C4×Q8).299C22 = C42.449D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).299C2^2 | 128,1812 |
(C4×Q8).300C22 = C42.223D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).300C2^2 | 128,1835 |
(C4×Q8).301C22 = C42.450D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).301C2^2 | 128,1838 |
(C4×Q8).302C22 = C42.230D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).302C2^2 | 128,1844 |
(C4×Q8).303C22 = C42.233D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).303C2^2 | 128,1847 |
(C4×Q8).304C22 = Q8⋊4D8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).304C2^2 | 128,2090 |
(C4×Q8).305C22 = Q8⋊7SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).305C2^2 | 128,2091 |
(C4×Q8).306C22 = C42.501C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).306C2^2 | 128,2092 |
(C4×Q8).307C22 = C42.502C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).307C2^2 | 128,2093 |
(C4×Q8).308C22 = Q8⋊8SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).308C2^2 | 128,2094 |
(C4×Q8).309C22 = Q8⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).309C2^2 | 128,2095 |
(C4×Q8).310C22 = Q8×D8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).310C2^2 | 128,2110 |
(C4×Q8).311C22 = D8⋊6Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).311C2^2 | 128,2112 |
(C4×Q8).312C22 = SD16⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).312C2^2 | 128,2113 |
(C4×Q8).313C22 = Q16⋊6Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).313C2^2 | 128,2115 |
(C4×Q8).314C22 = Q8⋊5D8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).314C2^2 | 128,2123 |
(C4×Q8).315C22 = Q8⋊9SD16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).315C2^2 | 128,2124 |
(C4×Q8).316C22 = Q8⋊6Q16 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).316C2^2 | 128,2127 |
(C4×Q8).317C22 = C42.530C23 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).317C2^2 | 128,2128 |
(C4×Q8).318C22 = C4×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).318C2^2 | 128,2162 |
(C4×Q8).319C22 = C22.50C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).319C2^2 | 128,2193 |
(C4×Q8).320C22 = C2×Q8⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).320C2^2 | 128,2208 |
(C4×Q8).321C22 = C2×Q82 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 128 | | (C4xQ8).321C2^2 | 128,2209 |
(C4×Q8).322C22 = Q8×C4○D4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).322C2^2 | 128,2210 |
(C4×Q8).323C22 = C22.69C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).323C2^2 | 128,2212 |
(C4×Q8).324C22 = C22.71C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).324C2^2 | 128,2214 |
(C4×Q8).325C22 = C22.72C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).325C2^2 | 128,2215 |
(C4×Q8).326C22 = C4⋊2- 1+4 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).326C2^2 | 128,2229 |
(C4×Q8).327C22 = C22.88C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).327C2^2 | 128,2231 |
(C4×Q8).328C22 = C22.101C25 | φ: C22/C2 → C2 ⊆ Out C4×Q8 | 64 | | (C4xQ8).328C2^2 | 128,2244 |
(C4×Q8).329C22 = Q8×C2×C8 | φ: trivial image | 128 | | (C4xQ8).329C2^2 | 128,1690 |
(C4×Q8).330C22 = Q8×M4(2) | φ: trivial image | 64 | | (C4xQ8).330C2^2 | 128,1695 |
(C4×Q8).331C22 = C8×C4○D4 | φ: trivial image | 64 | | (C4xQ8).331C2^2 | 128,1696 |
(C4×Q8).332C22 = Q8⋊6M4(2) | φ: trivial image | 64 | | (C4xQ8).332C2^2 | 128,1703 |
(C4×Q8).333C22 = C42.695C23 | φ: trivial image | 64 | | (C4xQ8).333C2^2 | 128,1714 |
(C4×Q8).334C22 = Q8.4M4(2) | φ: trivial image | 64 | | (C4xQ8).334C2^2 | 128,1716 |
(C4×Q8).335C22 = C42.697C23 | φ: trivial image | 64 | | (C4xQ8).335C2^2 | 128,1720 |
(C4×Q8).336C22 = Q8⋊7M4(2) | φ: trivial image | 64 | | (C4xQ8).336C2^2 | 128,1723 |